Главная » 2021 » Январь » 24 » Завоевание природы. Андреев Борис. 006
10:14
Завоевание природы. Андреев Борис. 006

***

***

***

10. Подземный жар.

Когда христианские попы хотят сделать свою "паству" более послушной и щедрой на удовлетворение "нужд церковных", то они начинают рассказывать о "геенне огненной", об "аде, где грешников будет жечь неугасимый огонь". Этот ад, по их представлению, помещается где-то внутри земли.

Надо сознаться, что попы довольно удачно выбрали место для своего воображаемого ада. Внутри земли действительно очень высокая температура. Человек узнал об этом, прорывая глубокие шахты при разработке залежей каменного угля, соли и других полезных ископаемых, а также прорезая насквозь высокие горы при постройке туннелей. В некоторых прорытых человеком шахтах настолько жарко, что работать там можно только в течение короткого времени, с частыми сменами и отдыхом наверху. Наблюдения, произведенные при подобных работах, показали, что по мере углубления в землю на каждые 33 метра температура повышается на 1°. Происходит это потому, что, как выяснила наука, земля наша некогда была расплавленным огненно-жидким шаром. Она лишь постепенно остывала, покрываясь снаружи твердой застывшей коркой. Толщина этой корки в настоящее время достигает какой-нибудь сотни километров, в то время как расстояние от поверхности земного шара до его центра больше шести тысяч километров. Если так жарко в глубоких шахтах, которые являются лишь маленькими булавочными уколами в оболочке нашей планеты, то какая же невообразимая жара должна господствовать во внутренности земли! Поистине—"геенна огненная"… Надо во избежание недоразумений тут же оговориться, что никакого огня там, конечно, нет, как нет его, например, внутри расплавленной массы какого-нибудь металла. Ведь огонь бывает только при горении, а для горения нужен воздух: во внутренности же земли никакого воздуха, конечно, тоже нет.

Итак, по мере углубления в землю становится все жарче и жарче. Вычислено, что уже на глубине 3 километров должно быть настолько жарко, что будет кипеть вода. Другими словами — температура должна достигать там 100 градусов. В некоторых же местах земного шара температура но мере углубления растет еще быстрее. Там, очевидно, твердая кора еще тоньше и расплавленная огненно-жидкая масса еще ближе подходит к поверхности земли. Вы, конечно, слышали и про такие места, в которых эта масса изливается иногда на поверхность земли, что бывает при вулканических извержениях. Для обслуживания большинства нужд нашей промышленности и транспорта мы в настоящее время пользуемся тепловой энергией, превращая ее в движение, электричество и т. п. Тепловая энергия является тем драгоценным источником, который питает силой наши фабрики, заводы, паровозы, пароходы… И вот, оказывается, что под нашими ногами находится буквально целый клад — неисчерпаемые запасы тепла, которые спрятаны, однако, довольно глубоко. До них надо еще добраться и надо суметь взять их в свои руки. Человечество и в этом деле сделало еще только самые первые, самые робкие шаги…

В Италии, около небольшого городка Лардерелло из земли бьют горячие источники, вода которых содержит


в растворе борную кислоту. Так как борная кислота применяется и в технике (например для приготовления эмали, глазурей и т. и.) и в медицине (как обеззараживающее средство), то ее и добывают из этих источников в больших количествах (рис. 29). Для этого раствор борной кислоты выпаривают в больших котлах, которые обогреваются бьющими там же из-под земли источниками

горячего пара. Кроме того этот же нагретый внутри земли пар употребляется для приведения в действие динамомашин, вырабатывающих электричество. Получаемое таким способом электричество применяется для освещения и других целей не только в самом Лардерелло, но посылается по проводам и в целый ряд других городов.

Есть и еще примеры использования источников горячей воды или водяного пара для технических целей, например в Америке), но пока их еще очень немного. А между тем, если бы прорыть глубокие шахты и на дне их установить машины, которые могли бы превращать теплоту прямо в электричество, то можно было бы получить столько энергии, что ее с избытком хватило бы на все наши нужды. Правда, прорытие таких глубоких шахт в настоящее время потребовало бы очень больших затрат,— это во-первых. А во-вторых, мы пока еще не умеем строить таких машин, которые превращали бы теплоту прямо в электричество: ведь на электрических станциях, в которых энергия получается от топлива, теплота приводит в действие сначала паровую машину, которая уже вращает динамомашину, вырабатывающую электричество. Такой способ не очень выгоден, ибо при нем электричество обходится довольно дорого.

Так обстоит дело теперь. Но если вы вспомните рассказанное в начале этой книжки, если вы себе представите, какие быстрые успехи делают наука и техника, особенно в последнее время, то вы, конечно, поймете, что завоевание "подземного жара" должно быть делом недалекого будущего. А раз человечество его завоюет, то ему нечего будет опасаться недостатка энергии!

Мы с вами, читатель, рассмотрели целый ряд "цветных слуг", которых человечество заставляет или сможет в сравнительно недалеком будущем заставить служить себе. Уголь, движущаяся вода, ветер, солнечная теплота, теплота земного шара—вот те источники, которые освободят если не нас, то наших детей и внуков полностью от тяжелого физического труда и позволят им еще быстрее пойти по пути облегчения и совершенствования своей жизни. Кроме перечисленных есть и другие источники энергии, которые, несомненно, также можно будет использовать; но это использование едва ли удастся наладить скоро, а потому мы здесь и не будем о них говорить.

Уже в настоящее время значение использования сил природы огромно, особенно в странах с развитой промышленностью. Если сравнить количество используемой теперь природной энергии с той работой, которую могло бы произвести все трудоспособное население страны, при условии, чтобы оно круглый год было занято тяжелым физическим трудом, то окажется, что количество используемой природной энергии больше работы людей:

в Германии………………………….. в 82 раза

„ Англии……………………………… „ 80 раз

„ Соед. Штат. С. Америки . . „ 78 „

во Франции………………………….. „26 „

в СССР…………………………………….. 9 „

Мы в этом отношении еще сильно отстали от других. Но, как об этом будет сказано дальше, теперь у нас есть все данные для того, чтобы поставить использование сил природы постепенно все лучше и лучше.

Нам уже пришлось упомянуть о том, как подходили к вопросу о труде человека "священные" книги. И мы видим, что человек вовсе не предназначен "в поте лица добывать хлеб свой". Те ученые, которые находились на службе у капиталистов и помещиков, подходили к вопросу о тяжелом труде с другой стороны. Они утверждали, что человечество слишком размножилось; что на земле не хватит источников энергии для обслуживания всех. А потому сама природа принуждает огромное большинство человечества изнывать в тяжелом труде и жить впроголодь. Ничего, значит, против этого не поделаешь…

Все это чепуха! Если сделать примерные подсчеты, то окажется, что рассмотренные нами выше источники энергии уже при нынешней технике могли бы дать пять лошадиных сил на душу населения земного шара, а может быть даже и десять. Это почти в два и в три раза больше, чем нам нужно.

Человечество может жить на земле легко, свободно и счастливо, природа дает ему все средства для этого. Мешает же ему не воображаемый "бог", а кое-что другое. Что именно, — это мы выясним несколько дальше, а пока попробуем подробнее ознакомиться с тем видом энергии, который начинает играть все большую и большую роль в нашей жизни и значение которого в будущем еще более возрастет.

Мы говорим об электричестве.

 

V. ПОРАБОЩЕННАЯ МОЛНИЯ.

1. Молния — электричество.

В мае 1752 года недалеко от Парижа был установлен странного вида высокий шест. Шест был деревянный, но заканчивался железным стержнем, укрепленным в стеклянной оправе. От стержня вниз тянулась металлическая проволока. И вот 10 мая, когда в этом месте проходила грозовая туча, люди, возившиеся около шеста, получили из проволоки электрическую искру, как бы извлеченную из грозовой тучи. А месяц спустя в Северной Америке довольно пожилой уже человек, по имени Вениамин Франклин, несмотря на совсем не подходящую погоду (была гроза), занимался… запусканием змея. Змей был тоже не совсем обыкновенный. Он был снабжен железным острием, а пеньковая веревка, на которой его запустили, была привязана к ключу, придерживаемому шелковым платком. Когда веревка намокла от дождя, то Франклин, приближая к ключу руку, получал из него явственно видимые электрические искры.

Не для забавы запускал змей Вениамин Франклин. В его время уже знали, что при трении некоторых тел друг о друга (например какой-нибудь смолы или серы о шерсть или стекла о кожу) получается электричество. В его время строили и электрические машины, в которых электричество добывалось именно трением. С такими машинами производили много различных опытов… Но Франклина занимала мысль:

А не электрическими ли искрами являются те гигантские молнии, которые бороздят во время грозы небо? Не заряжаются ли тучи электричеством подобным же путем, как заряжаются наши электрические машины, и не получаем ли мы при разряде последних ту же молнию, только в маленьких размерах?

Описанные опыты с шестом (проделанные тоже для проверки мысли, именно Франклина) и опыты со змеем, впоследствии неоднократно проверенные и в других странах, показали, что Франклин был прав.

Та грозная молния, которая издавна пугала человека, которая и теперь еще заставляет испуганно креститься темных женщин в глухих деревнях, оказалась электрического происхождения. И значит, изучая электричество и используя плоды этого изучения для своих нужд, человек заставляет служить себе те же силы, которые производят и молнию, — одно из самых величественных проявлений природного электричества.

Открытие этого факта позволило прежде всего обезвредить молнию. Высокие металлические, заостренные сверху шесты, зарытые нижним концом глубоко в землю — громоотводы — как бы притягивают к себе молнию, отводят ее в землю и тем самым предохраняют соседние с ними предметы от удара молнии. Громоотвод, благодаря которому современные города нс боятся молнии, был также изобретен Франклином.

2. Как люди дошли до электрического двигателя.

Давно было известно, что куски одной железной руды, так называемого магнитного железняка, притягивают к себе железо. Это свойство назвали магнетизмом. Если потереть таким куском стальной стержень, то и он становится магнитом, т.-е. начинает притягивать к себе железные предметы. Намагниченными стальными стрелками уже несколько сот лет тому назад стали пользоваться для устройства компаса — прибора, применяемого для определения направления. Такая стрелка обладает свойством всегда поворачиваться одним концом на север, другим на юг.

В 1820 году датский ученый, физик, но имени Эрштедт, случайно на лекции заметил, что электрический ток отклонял в сторону находившуюся вблизи магнитную стрелку. Это наблюдение заинтересовало его и он начал изучать действие электричества на магнитную стрелку. Изучали это и другие ученые. И вот оказалось, что не только ток действует на магнит, но и магнит действует на ток: неподвижный сильный магнит отклоняет подвижную проволочную спираль, по которой идет ток.

Мало того. Если вокруг железного стержня обмотать спиралью проволоку и пропустить по ней электрический ток, то стержень становится магнитом, пока по проволоке идет ток. Такой прибор получил название электромагнита.


На рисунке 30 изображен приборчик, с помощью которого легко можно видеть действие электромагнита. Вокруг изогнутого железного стержня намотано витками несколько слоев проволоки (QP) но которой можно пропускать электрический ток. Под электромагнитом находится чашка с гирями, прикрепленная к железной пластинке bа. Когда по обмотке электромагнита пропускают ток, то стержень намагничивается, притягивает к себе пластинку bа, а вместе с ней и чашку с гирями. Пока по обмотке идет ток, электромагнит удерживает чашку на весу, несмотря на положенные на нее тяжелые гири. Как только ток прекратится, гири отрывают чашку и она падает, — электромагнит уже не в силах удержать ее.

Электромагниты различного устройства получили в технике самое широкое применение. Ими пользуются, например, в подъемных кранах для поднимания тяжелых железных, стальных или чугунных предметов, для закрепления стальных предметов при шлифовке, для временного электромагнитного сцепления работающих валов и т. п. Электромагнит найдете вы в электрическом звонке, телефоне, телеграфном аппарате…

Рассмотрим для примера, как действует он в электрическом звонке, изображенном на рисунке 31.

Электромагнит расположен внутри звонка. Электрический ток идет через проволоку т в обмотки электромагнита, оттуда в пружинку, к которой прикреплен железный стержень а с шариком Р. Через этот стержень ток идет в пружинку с и уходит дальше по проволоке. Как только через электромагнит пойдет ток, он сейчас же намагнитится и притянет к себе стержень а. Прикрепленный к последнему молоточек Р ударит в чашку звонка Т. Но при этом стержень отойдет от пружинки с,— значит, прервется проход для тока, и ток поэтому прекратится.


Как только прекратится ток, электромагнит "размагнитится", т.-е. перестанет притягивать к себе стержень а, который оттянется к пружинке с. Коснувшись пружинки, стержень снова замкнет ток, — электромагнит

намагнитится, притянет стержень, молоточек ударит в чашку, — и так далее. Звонок будет непрерывно звонить, пока через него пропускают ток.

Электромагнит очень удобен в обращении. Простым замыканием и размыканием тока мы можем управлять им по своему желанию, находясь от него на любом расстоянии. Он гораздо сильнее простого стального магнита. Но особенно широкое техническое применение получил он благодаря работам упоминавшегося уже в этой книжке ученого физика — Михаила Фарадея.

В то время уже хорошо знали, что если к заряженному электричеством предмету поднести другой предмет, то в последнем тоже появляется электричество через "влияние" первого предмета. Знали также, как мы видели, что электричество вызывает в железе магнитные свойства. Фарадей и думал, нельзя ли, наоборот, с помощью магнетизма получить электричество. Он располагал проволоку, концы которой были соединены с чувствительным к току прибором ,— гальваноскопом, вблизи сильного магнита. Сколько, однако, ни бился Фарадей, никакого постоянного тока в проволоке ему таким способом обнаружить не удалось. Но зато ему удалось заметить другое очень важное обстоятельство.

Постоянного тока в проволоке не было. Но в тот момент, когда Фарадей двигал сильный магнит внутри проволочной спирали, в проволоке появлялся ток. Шел этот ток только во время движения магнита. То же самое получалось, если около неподвижного магнита двигалась проволока, концы которой были соединены с гальваноскопом.

Удалось Фарадею получить такие токи, когда он, вместо магнита, брал вторую проволоку, по которой шел ток. В то время когда он замыкал или размыкал ток во второй проволоке, в расположенной вблизи первой на короткое время появлялся ток.

Это были те самые опыты, которые Фарадей показывал министру и из которых развилась вся современная электротехника. Опыты Фарадея послужили исходным пунктом дли развития современного электродвигателя. Но, конечно, они нашли себе практическое применение не сразу. Понадобились труды многих ученых физиков и техников для того, чтобы электродвигатель мог появиться.

  Современная динамомашина (так называется машина, вырабатывающая электрический ток) состоит из следующих главных частей (рис. 32):

1) электромагнита М, вокруг которого намотана проволока. Когда по этой проволоке идет ток, то электромагнит намагничивается;

2) якоря Л, состоящего из большого числа катушек изолированной (т.-е. покрытой не пропускающей электричества обмоткой) медной проволоки, которые надеты на железное кольцо. Кольцо помещается между концами (полюсами) электромагнита;

3) коллектора K, состоящего из ряда изолированных друг от друга медных пластинок. К этим пластинкам присоединяются свободные концы проволок от катушек якоря. Коллектор и якорь сидят на общем валу;

4) щеток, которые при вращении коллектора скользят по нему. Щетки делаются из металлических или угольных пластинок, закрепленных в общей оправе, и соединяются с отходящими от динамомашины проводами.

Как же действует такая динамомашина?

Ее якорь приводится в быстрое вращение с помощью передачи от паровой машины, водяной турбины или какого-либо другого двигателя. Электромагнит устроен так, что в это время он сильно намагничивается. Так как катушки якоря быстро двигаются между его полюсами, то в проволоке катушек возбуждается сильный электрический ток. Он идет из катушек в пластинки коллектора, из них — в скользящие щетки, а из щеток — во внешние провода. Таким образом, пока якорь вращается, во внешних проводах (если они, конечно, не разомкнуты) все время идет ток.


Динамомашины бывают разного устройства и служат для различных целей. Но мы не будем здесь останавливаться на подробностях, а перейдем к собственно электродвигателю, т.-е. машине, превращающей электрическую энергию в энергию движения.

В 1807 году в городе Париже, столице Франции, устраивалась всемирная выставка. Устанавливались на ней, между прочим, и изобретенные незадолго до этого динамомашины. Когда одну из них соединили с передаточным валом от паровой машины и она начала работать, вдруг завертелся якорь и одной из остальных динамомашин, которые с передаточным валом соединены еще не были. И эту вторую машину никак нельзя было ни остановить, ни затормозить, пока работала первая. Удивленные монтеры начали расследовать это обстоятельство и выяснили в конце концов следующее.

Провода, шедшие от первой машины, случайно оказались соединенными с проводами второй машины. Когда передаточный вал завертел якорь первой машины, то вырабатывавшийся в ней электрический ток пошел в обмотки якоря второй машины. Якорь второй машины благодаря этому тоже завертелся. К ее валу можно было присоединить передаточный ремень и с помощью последнего привести в движение любую машину.

Таким образом была открыта возможность превращения динамомашины в электродвигатель. Современные электродвигатели устраиваются несколько иначе, чем динамомашины, но, в сущности говоря, электродвигатель — это та же динамомашина, только действующая как раз наоборот:

динамомашина превращает энергию движения в электрическую, а электродвигатель превращает электрическую энергию в энергию движения.

3. Что делает для нас электричество.

Если бы мы вздумали подробно описывать все практические применения электричества, то для этого не хватило бы и десяти таких книжек, как наша. Поэтому придется ограничиться упоминанием лишь самого главного и рассмотрением только некоторых примеров.

Если вам придется когда-нибудь попасть на фабрику, работающую электричеством, то вы сразу заметите, что она даже по внешнему виду отличается от фабрики, обслуживаемой паровыми машинами. Вы не увидите на ней сложной системы передаточных валов и ремней, загромождающей помещение и представляющей большую опасность для рабочих. Здесь около машин и станков стоят электродвигатели, которые приводятся в движение от динамомашин центральной станции, общей для всего предприятия; иногда же эта станция находится далеко от предприятия. Провода к электродвигателям идут где-нибудь скрыто под полом или вдоль стен здания и никому не мешают. Каждый мотор может быть пущен в ход или остановлен в любой момент, независимо от других. Энергия расходуется только в то время, пока работает мотор: нет потерь на холостой ход, обычных при передачах от паровой машины.

Чистота, экономия, удобство, безопасность — вот характерные черты фабричного производства, оборудованного электродвигателями. И кроме того оно для своего обслуживания требует гораздо меньше людей, чем обычно.

Современная электрическая станция мощностью в 100000 лошадиных сил требует для своего обслуживания всего около 100 рабочих.

Благодаря применению электричества значительно удешевились многие отрасли промышленности, а некоторые только и могли возникнуть после того, как люди научились пользоваться электричеством. Приведем примеры.

Кто теперь не пользуется алюминиевой посудой,— по своей цене она доступна всем.


Алюминий добывается из особой белой глины. Семьдесят лет тому назад приготовление его обходилось настолько дорого, что килограмм алюминия стоил около 300 рублей. Это был драгоценный металл. Теперь алюминий добывают с помощью электрического тока и цена его упала благодаря этому в несколько сот раз.

С помощью электричества в заводской практике можно достигнуть такого жара, которого не удается достигнуть никакими другими способами. Для этого применяются электрические печи. Одна из таких простых печей показана на рисунке 33.          Она выложена из огнеупорного материала (известкового кирпича). Верхнюю часть ее можно снимать и опять накладывать. С боков внутрь печи входят, как показано на рисунке, два длинных угольных стержня, но которым пропускается сильный электрический ток. Когда по ним идет ток, то между концами обоих несколько отодвинутых друг от друга стержней вспыхивает та яркая вольтова дуга, которую можно видеть в больших уличных электрических фонарях. При этом развивается такой сильный жар, при котором плавятся многие тугоплавкие вещества.

Под углями в печи устанавливается огнеупорный сосуд из графита, куда помещается то вещество, которое надо расплавить. После плавки верхняя часть печи снимается и сосуд опоражнивается. В более усовершенствованных печах имеются приспособления, позволяющие просто выпускать из печи наружу расплавленное вещество.

С помощью электрических печей готовятся, например, разные важные для техники сплавы: очень твердая и прочная хромовая сталь, применяющаяся для артиллерийских снарядов и выделки брони военных судов, ванадиевая сталь, употребляющаяся для выделки инструментов, не теряющих своей твердости и прочности при разогревании, вольфрамовая сталь и другие сплавы.

Широкое применение находит электричество при получении многих чистых металлов, например меди, олова, свинца, цинка. Для этого нечистые металлы растворяют в кислотах и потом в особых аппаратах пропускают через такие растворы электрический ток. При прохождении тока металл осаждается в очень чистом виде.

С помощью электричества можно серебрить, золотить, никелировать разные металлические вещи. Делается это так. Для золочения, например, помещают металлическую вещь в раствор такого вещества, которое содержит золото. Электрический ток от внешнего провода идет в металлическую вещь, а потом через раствор в другой провод. Во время прохождения тока из раствора выделяется золото и очень тонким, но в то же время прочным слоем осаждается на подвергающемся золочению предмете.

Скажем еще об одной важной отрасли промышленности, которая стала возможной благодаря электричеству.

Для повышения урожая истощенную посевами землю необходимо удобрять искусственными удобрениями. Одним из таких необходимых для роста растений удобрений является селитра. До недавнего времени для удобрения, а также и других целей (например для приготовления взрывчатых веществ) шла исключительно природная селитра. Добывалась она, главным образом, в Америке, в государстве Чили. Однако залежи природной селитры начали быстро истощаться, надо было подумать об их замене. Такую замену позволило найти электричество.

Если пропускать сильные электрические искры через воздух, то из воздуха начинают образовываться едкие бурые пары. Пары эти распускаются в воде, при чем получается азотная кислота. Растворяя в ней известь можно получить так называемую кальциевую селитру, которая является прекрасным удобрением, заменяющим природную селитру. Этот способ и применяется теперь для заводского производства селитры из воздуха с помощью электричества. Так как воздуха на земле сколько угодно, то теперь уже, благодаря физике, бояться истощения природных залежей селитры не приходится.

Немногие приведенные примеры применения электричества показывают, какое важное значение оно имеет для нас. Но применение электричества этим не ограничивается.

Вы живете в большом городе, и место вашей работы находится далеко от дома. К вашим услугам электрический трамвай (рис. 34), который быстро доставит вас на место. Где-то далеко на центральной станции работают динамомашины. Вырабатываемый ими ток разбегается по сети проводов во все стороны. По одному из проводов, которого касается металлическая дуга трамвайного вагона, он подходит к трамваю. Вагоновожатый повернул ручку, ток пошел в скрытый под кузовом трамвая электромотор и завертел его якорь. Якорь, соединенный с трамвайной осью, передал ей свое вращение, колеса завертелись, и трамвай поехал. В любой момент поворотом ручки вагоновожатый останавливает вагон. Трамвайный моторный вагон иногда идет один, иногда тянет с собой еще прицепной вагон.


Теперь пробуют применить электрический двигатель и на железных дорогах. Здесь "электровоз" должен уже тянуть не один вагон, а целый поезд. Значит, его мотор должен быть гораздо сильнее трамвайного. Электровозы уже строятся и применяются (рис. 35). Ток к ним или идет по проводам, или вырабатывается внутри самого электровоза.


Зашло солнце и на улицах города становится темно. Мгновенно всюду вспыхивают яркие электрические Фонари и лампочки. В больших фонарях электрический ток дает свет, проскакивая между концами двух угольных стержней. В электрической лампочке (рис. 36) он проходит по тонкой угольной или металлической нити, раскаляя ее до яркого свечения. Чтобы нить не сгорела, воздух из лампочек выкачан.

А какое это удобство, если у вас в комнате проведено электрическое освещение! Поворот выключателя — и комната залита ярким светом. Чисто, нет копоти, не портится воздух, как при керосиновой лампе, безопасно в пожарном отношении…

Многое можно было бы еще сказать о тех удобствах, которые доставляет электричество жителю города. Но оно же может играть большую роль и в деревне.                                                Читать  дальше  ...  

***

***

     Источник  :  http://litresp.ru/chitat/ru/%D0%90/andreev-boris/zavoevanie-prirodi#sec_2     ***

***

***

  Завоевание природы. Андреев Борис. 001 

  Завоевание природы. Андреев Борис. 002 

  Завоевание природы. Андреев Борис. 003 

  Завоевание природы. Андреев Борис. 004

  Завоевание природы. Андреев Борис. 005 

  Завоевание природы. Андреев Борис. 006 

  Завоевание природы. Андреев Борис. 007

  Завоевание природы. Андреев Борис. 008 

***

***

***

***

***

Андреев Борис - Завоевание природы

 

 

Автор: Андреев Борис
Название: Завоевание природы
Жанр: Технические науки
Издательский дом: Тип. Госиздата ."Красный Пролетарий". Москва, Пименозская, 16.
Год издания: 1927
Аннотация:
Как известно товарищ Сталин читал много до 500 страниц машинописного текста в день. Его библиотека была богата своим разнообразием. Одну из своих книг «Завоевание природы» Б. Андреева — Сталин не только прочел, но и подарил своему сыну Якову к его 20-летию с просьбой обязательно эту книгу прочесть.

 Источник : https://royallib.com/book/andreev_boris/zavoevanie_prirodi.html


***

***

ПОДЕЛИТЬСЯ

                

 

***

Яндекс.Метрика

***

***

***

***

Баренцево море... у маяка Выевнаволок

 Альбом ДМБ - 78 001 (140).jpg     Альбом ДМБ - 78 001 (107).jpg

 

 

***

***

Великие путешественники. Спик Джон Хэннинг

исследовал Сомали и открыл озеро Танганьика, в 1858 году открыл озеро Виктория и установил (в 1860-1863 годах вместе с Дж. О. Грантом), что река Виктория-Нил вытекает из него.

 ... Читать дальше »

***

***

Вечер, третье сентября, 2020 год... С велосипедом в Краснодаре

 

DSC07677 01.JPG  

Улица Красная, по мнению Герасима, была великолепна, но несколько утомительна обилием светофоров ... Читать дальше »

***

***

Возвращение в тот день... Дорога к морю... Четвёртое сентября

 

DSC07720 - ....JPG 

 

***

Фото из велопутешествия 04.09.2020... Курс - на Ахтари ...

 

DSC07720.JPG

***

***

Что мы знаем и чего не знаем о себе. А.В.Петровский.

 

   

 Артур Владимирович Петровский (14 мая 1924 - 2 декабря 2006) - советский и российский психолог, специалист в области истории психологии, социальной психологии и психологии личности.
...Не больше ли мы знаем об окружающем нас мире, чем о себе самих? Наша память, способности, воображение, внушаемость и многое другое для нас зачастую остаются тайной «за семью печатями». Отсюда и возможные ошибки в самооценке, поведении, выборе жизненного пути. Психология может ответить на многие волнующие старшеклассника вопросы в его стремлении понять себя.

Что мы знаем и чего не знаем о себе...А.В.Петровский 001.jpg
 


***




























 

О книге

 

***

Разные разности

Из НОВОСТЕЙ 

Новости

Из свежих новостей - АРХИВ...

11 мая 2010

Аудиокниги

Новость 2

Семашхо

***

***

***

***

***

Просмотров: 379 | Добавил: iwanserencky | Теги: Андреев Борис, слово, Борис Андреев, популяризатор, популяризатор науки, текст, книга, Завоевание природы. Андреев Борис, Завоевание природы, книги, фото из интернета, из интернета, популяризация, Технические науки, книги Сталина | Рейтинг: 5.0/1
Всего комментариев: 0
Имя *:
Email *:
Код *: